
University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS 1

Lecture 08
Introduction to the MIPS ISA

+
Procedure Calls in MIPS

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

MIPS Datapath

2

MIPS Instructions
are 32 bits ... plus 6 bit function codes = more functionality

6 bit opcodes...

More ways to
address memory

Longer
instructions =
more bits to

address
registers

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

MIPS Registers

3

Name R# Usage Preserved on Call

$zero 0 The constant value 0 n.a.

$v0-$v1 2-3 Values for results & expr. eval. no

$a0-$a3 4-7 Arguments no

$t0-$t7 8-15 Temporaries no

$s0-$s7 16-23 Saved yes

$t8-$t9 24-25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

$at 1 Reserved for assembler n.a.

$k0-$k1 26-27 Reserved for use by OS n.a.

(and the “conventions” associated with them)

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

MIPS Instruction Types
• Instructions are characterized into basic types

• For type 32 bits of instruction are interpreted differently

• 3 types of instructions in MIPS

– R type

– I type

– J type

• In other words:

– As seen with Add, instruction encoding broken down into
X different fields

– With MIPS, only 3 ways X # of bits arranged

• Think about datapath: Why might this be good?

4

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS 5

A quick look: more complex ISAs Datapath

Path of
Add from
start to
finish.

Add: 0010 0001 0010 0011

00
10

 0
01

1

Mov: 0000 0001 0010 0011

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

! R-type: All operands are in registers

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! (add: op+func)

Machine:

B: 000000 00111 01000 01001 xxxxx 100000
D: 0 7 8 9 x 32

6

R-Type: Assembly and Machine Format

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! All instructions have 3 operands

! All operands must be registers

! Operand order is fixed (destination first)

! Example:

! C code: ! A = B - C;

! ! (Assume that A, B, C are stored in registers s0, s1, s2.)

! MIPS code:! sub $s0, $s1, $s2

! Machine code: 000000 10001 10010 10000 xxxxx 100010

! Other R-type instructions

" addu, mult, and, or, sll, srl, …

7

R-type Instructions

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

• I-type: One operand is an immediate value and others
 are in registers

 Example: addi $s2, $s1, 128 # addi rt, rs, Imm
 # RF[18] = RF[17]+128

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions

B: 001000 10001 10010 0000000010000000
D: 8 17 18 128

8

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

• I-type: One operand is an immediate value and others
 are in registers

 Example: lw !"#$%#&'!()*%%%%%+%RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions: Another Example

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?

9

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

• I-type: One operand is an immediate value and others
 are in registers

 Example: Again:: bne $t0, $t1, Again
 # if (RF[8]!=RF[9]) PC=PC + 4 + Imm*4
 # else PC=PC+4

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions: Yet Another Example

B: 00101 01000 01001 0000 0000 0001 0000
D: 5 8 9 16

,-./012(340%255/0""367

10

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

Byte addressability
• What “immediate values” are encoded in an I-type

instruction (for example) are affected by the fact that
MIPS data words are byte addressable

– (Let"s look at Questions #1 and #2 on the board)

11

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! J-type: only one operand: the target address

 Example: j 3 # Goto addr. 3 x 4 (i.e. goto addr. 12)

Op (6) Target address (26)

31 26 25 0

B: 000010 00000000000000000000000011
D: 2 3

12

J-Type Instructions

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

In class examples

13

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS 14

Size of Immediate Operand

32-63
16-31

8-15

4-7

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

Practical Procedures

15

Have already started to see that you don"t make N copies of
for loop body

for (i=0; i<N; i++) {

a = b + c;

d = a + e;

f = d + i;

}

Thus: Might look like this:

N = $2, i = $3

subi $2, $2, 1
add $4, $5, $6
add $7, $4, $8
add $9, $7, $10
addi $3, $3, 1
sub $11, $2, $3
bneq $11, $0, loop

N = N -1
a = b + c
d = a + e
f = d + i
i = i + 1
$11 = $3 - $2
if $11 != 0, loop

You wouldn"t make multiple copies of a machine
instruction function either...

loop:

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

Practical Procedures

16

int main(void) {

int i;

int j;

j = power(i, 7);

}

int power(int i, int n) {

int j, k;

for (j=0; j<n; j++)

k = i*i;

return k;

}

For example: Might look like this:

i = $4

addi $ 5, $0, 7
j power

....

arg reg. = 7

subi $2, $2, 1
mult $5, $5, $5
addi $3, $3, 1
sub $11, $2, $3
bneq $11, $0, loop
add $2, $5, $0
j call

power:

call:

data in ret. reg.

Advantage: Much greater code density.
(especially valuable for library routines, etc.)

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

Procedure calls are so common that
there"s significant architectural support.

17

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! The big picture:
 Caller Callee

! Need “jump” and “return”:

" jal ProcAddr # issued in the caller

• jumps to ProcAddr

• save the return instruction address in $31

• PC = JumpAddr, RF[31]=PC+4;

" jr $31 ($ra) # last instruction in the callee

• jump back to the caller procedure

• PC = RF[31]

PC

PC+1

r0

r1

r31 b0bn-1 ...

...

0

PC

HI

LO

!#8%9%!/2%'/0(:/6%255/0""*jal

jr

18

MIPS Procedure Handling

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! What about passing parameters and return values?

" registers $4 - $7 ($a0-$a3) are used to pass first 4
parameters

" returned values are in $2 and $3 ($v0-$v1)

! 32x32-bit GPRs (General purpose registers)

" $0 = $zero (Liar! only 31 GPRs)

" $2 - $3 = $v0 - $v1 (return values)

" $4 - $7 = $a0 - $a3 (arguments)

" $8 - $15 = $t0 - $t7 (temporaries)

" $16 - $23 = $s0 - $s7 (saved)

" $24 - $25 = $t8 - $t9 (more temporaries)

" $31 = $ra (return address)

r0

r1

r31 b0bn-1 ...

...

32 bits

0

PC

HI

LO

19

MIPS Procedure Handling (cont.)

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

In class example

20

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! Register contents across procedure calls are designated as either
caller or callee saved

! MIPS register conventions:

"$t*, $v*, $a*: not preserved across call

• caller saves them if required

"$s*, $ra, $fp: preserved across call

• callee saves them if required

"See P&H FIGURE 2.18 (p.88) for a detailed register usage
convention

"Save to where??

! More complex procedure calls

"What if your have more than 4 arguments?

"What if your procedure requires more registers than available?

"What about nested procedure calls?

"What happens to $ra if proc1 calls proc 2 which calls proc3,…

21

More complex cases

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! Stack

"A dedicated area of memory

"First-In-Last-Out (FILO)

"Used to

#Hold values passed to a procedure as arguments

#Save register contents when needed

#Provide space for variables local to a procedure

! Stack operations

"push: place data on stack (sw in MIPS)

"pop: remove data from stack (lw in MIPS)

! Stack pointer

"Stores the address of the top of the stack

"$29 ($sp) in MIPS

22

The stack comes to the rescue

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! Stack pointer is kept double-word aligned (by
convention)

Memory
Structure

Data
segment

Instruction
segment

Reserved

PC

SP
Higher
Mem
Addr

Stack
segment

Lower
Mem
Addr

.

.

.

Addr

i-2
i-1
i

i+1
i+2 $sp = i

Top of stack

23

Where is the stack located?

University of Notre Dame

CSE 30321 - Lecture 08 - Introduction to the MIPS ISA + Procedure Calls in MIPS

! Each procedure is associated with a call frame

! Each frame has a frame pointer: $fp ($30)

Argument 5
is in 4($fp)

$sp

$fp

Snap shots of stack

main

proc1

proc2

proc3

main {

…

 proc1

…}

proc1 {

…

 proc2

…}

proc2 {

…

 proc3

…}

Local
variables

Saved
Registes

($fp)
($ra)

…

Argument 5

Argument 6

24

Call frames

